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A two-dimensional-in-space mathematical model of amperometric biosensors has been de-
veloped. The model is based on the diffusion equations containing a nonlinear term related
to the Michaelis—Menten kinetic of the enzymatic reaction. The model takes into consider-
ation two types of roughness of the upper surface (bulk solution/membrane interface) of the
enzyme membrane, immobilised onto an electrode. Using digital simulation, the influence of
the geometry of the roughness on the biosensor response was investigated. Digital simulation
was carried out using the finite-difference technique.
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1. Introduction

Biosensors are analytical devices in which immobilised biologically active com-
pounds are used in combination with a signal transducer and an electronic amplifier
[1-3]. Starting from the publication of Clark and Lyons in 1962 [4], the amperomet-
ric biosensors became one of the popular and perspective trends of biosensorics. The
amperometric biosensors measure the faradaic current that arises on a working indicator
electrode by direct electrochemical oxidation or reduction of the products of the bio-
chemical reaction [5-7]. In amperometric biosensors the potential at the electrode is
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held constant while the current is measured. The amperometric biosensors are known to
be reliable, cheap and highly sensitive for environment, clinical and industrial purposes
[2,3,5,6].

Since it is not generally possible to measure the concentration of substrate inside
enzyme membranes with analytical devices, starting form seventies various mathemat-
ical models of amperometric biosensors have been developed and used as an important
tool to study and optimise analytical characteristics of actual biosensors [8-12]. The
goal of this investigation is to make a model allowing an effective computer simulation
of membrane biosensors as well as to investigate the influence of the geometrical and
kinetic parameters of the biosensors on the response. The developed model is based
on non-stationary diffusion equations [13], containing a nonlinear term related to the
Michaelis—Menten kinetic of the enzymatic reaction.

The thickness of the enzyme membrane has a considerable effect on the biosensor
current as well as response time [2,3,14,15]. Due to the technology of the biosensors
preparation it is difficult to ensure absolutely flat surface of the membrane at the bulk
solution/membrane interface. This paper deals with the influence of roughness of the
upper surface of the enzyme membrane on the biosensor response. Using digital sim-
ulation, the influence of the geometry of the roughness on the biosensor response was
investigated at wide range of the maximal enzymatic rates and substrate concentrations.
The basic thickness of the enzyme membrane was also changed.

In this investigation, the digital simulation of the biosensor response was carried
out using the explicit finite difference scheme [16—19]. The program was used for nu-
merical investigation of the kinetics of the biosensors response taking place during phe-
nols detection in waste waters [20].

2. Principal structure of a membrane biosensor

We assume, that the thickness of the enzyme membrane of a biosensor is much
less than its length and width. In modelling of roughness of the upper surface (bulk
solution/membrane interface) of the enzyme layer, immobilised onto an electrode, we
assume that the membrane surface is generally composed of protuberance and under-
ground sites. We investigate two types of the surface roughness.

In a case of the first type of surface roughness, the enzyme layer is modelled by
identical longitudinal slabs, distributed uniformly. Figure 1 shows a biosensor, where
protuberances are right quadrangular prisms of baseyz distributed uniformly so,
that the distance between them equals t0-2(b). Due to the uniform distribution of
the protuberances, it is reasonable to consider only a unit consisting of a single protuber-
ance together with the basic enzyme layer and an enzyme region between two adjacent
protuberances. Because of the symmetry of such unit we may consider only its half. The
relatively great length of the unit allows to consider only the transverse section of the
half of the unit. Figure 2 shows a profile of the considering unit of the biosensor. The
profile parameten stands for the width of the entire unit, while paramétestands for
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Figure 1. Principal structure of the biosensor when the roughness of the enzyme layer surface is modelled
by identical longitudinal slabs, distributed uniformly. The figure is not to scale.
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Figure 2. The profile of the biosensor membrane plane. d is the basic thickness of the enzyme layer,
a is the width of a unit. The protuberance is a rectaigty ¢ in the transverse section.

the width of the protuberance. The third parametés the height of the enzyme layer
roughness.

In a case of the second type of the surface roughness, the enzyme membrane is
modelled by identical right cylinders, distributed uniformly on the basic enzyme sur-
face. Figure 3 shows a biosensor, where protuberant cylinders of radiod height
are arranged in a rigid hexagonal array. The distance between centres of two adjacent
cylinders equals to® Due to the uniform distribution of the protuberant cylinders, the
entire enzyme layer may be divided into equal hexagonal prisms with regular hexago-
nal bases. For simplicity, it is reasonable to consider a circle of radiwbose area
equals to that of the hexagon and to regard one of the cylinders as a unit cell of the en-
zyme layer. Due to the symmetry of the unit cell, we may consider only a half of the
transverse section of the unit cell. Very similar approach has been used in modelling of
partially blocked electrodes [21-23]. Figure 2 shows the profile of the considering unit
of the biosensor, presented schematically in figure 3.
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Figure 3. Principal structure of the biosensor when the roughness of the enzyme layer surface is modelled by
identical cylinders, distributed uniformly so, that the enzyme layer may be divided into identical hexagonal
prisms with regular hexagonal bases. The figure is not to scale.

3.  Mathematical model

We consider an enzyme-catalysed reaction when the substrate binds to enzyme and
converts to the product.

We have discussed two different types of roughness of the surface of the enzyme
membrane. However, the profile aplane (figure 2) is the same for both types of the
roughness. Nevertheless, the corresponding mathematical models have to be formulated
differently. In the case, when the biosensor structure looks like the structure presented in
figure 1, we formulate two-dimensional-in-space (2-D) model in Cartesian coordinates,
while in the next case (figure 3) we formulate 2-D model in cylindrical ones.

3.1. 2-D moddl in Descartes coordinates
Let Qp be the closed region, restricted with the concave hexagon, presented in
figure 2,23 be the corresponding open region, dhg— the upper border of that region
Q={(x2:0<x<a,0<z<d}U{(x,2): 0<x<bd<z<d+c}, (1)
Q%:{(x,z): O<x<a,0<z <d}U{(x,z): O<x<b,d<z <d+c}, (2)
F={(x,d+¢):0<x <b}U{(x,d): b<x<a}
U{h,2): d <z<d+c}. ®3)

Considering two-dimensional-in-space diffusion, coupling of enzyme catalysed re-
action with the diffusion described by Fick’s law, leads to the following equations:

9S 92S 928 VimaxS
— =Ds— ST — , (4)
ot dx 922 Ku+S
P 92P 9%P VinaxS
S Dl 4 D , )€ 0<r<T, 5
Py P8x2+ Pazz+1<M+S (x,2) < 5)

whereS = S(x, z,t) is the substrate concentratioR, = P(x, z, ) iS concentration
of the reaction productDs and Dp are the diffusion coefficients of the substrate and



R. Baronas et al. / Modelling of amperometric biosensors 231

product, respectivelymax is the maximal enzymatic rate attainable with that amount of
enzyme, when the enzyme is fully saturated with substiigs the Michaelis constant,
t is time, andr is full time of the biosensor operation.

Let z = O represents the electrode surface, wihille represents the bulk solu-
tion/membrane interface. The operation of biosensor starts when some substrate appears
over the surface of the enzyme membrane. This is used in the initial conditien®)(

S(x, <, 0) = 0, (X, Z) (S QD\FD, (6)
S(x, Z, 0) = So, (X, Z) € FD, (7)
P(x,z,00=0, (x,2) € Qp, (8)

whereSj is the concentration of substrate (bulk) swilling the biosensor.
The following boundary conditions express the symmetry of the unit cell on both
sides of the regio®p: x =0andx =a 0 <t < T):

0S8
0x

_ 0S8
0 T ox

9P

r—a ox

P

= — =0. 9
x=0 dx ( )

X=a

Because of electrode polarisation, the concentration of the reaction product at the
electrode surface is being permanently reduced to zero. The substrate does not react
at the electrode surface. If the substrate is well-stirred and in powerful motion, then
the concentration of substrate as well as product over the enzyme surface (bulk solu-
tion/membrane interfacd,p) remains constant while the biosensor contacts with the
substrate. This is used in the boundary conditions: (0< T) given by

P(x,0,1) =0, 0<x<aq, (20)
sl o, (11)
32 z=0

S(x,z,t) = 8o, (x,2) €TIp, (12)
P(x,z,t)=0, (x,z) €Tbp. (13)

The measured current is accepted as a response of a biosensor in a physical experi-
ment. The current depends upon the flux of the reaction product at the electrode surface,
i.e., at the bordetr = 0. Consequently, the densityr) of the current at time can
be obtained explicitly from Faraday’s law and Fick’s law using the flux of the product
concentrationP at the surface of the electrode

1 40P
i(t) = }’ZeFDp—/ —
aJo

14
| o 14)

z=0

whereng is a number of electrons involved in a charge transfer at the electrode surface,
and F is Faraday constant, = 96485 C/mol.
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3.2. 2-D mode in cylindrical coordinates

Since the profile at plane (figure 2) is the same for both types of the roughness,
the domain to be considered in the case of cylindrical coordinates can be expressed by
replacing the coordinate with coordinater in definitions (1)—(3):

Qc={(n2:0<r<a,0<r<dju{(rn2:0<r<bd<z<d+c}, (15)

Qg:{(r 2).0<r<aO<r <d}U{(r,z): O<r<b,d< <d—|—c}, (16)

Fe={(rnd+¢): 0<r<blU{(rd): b<r<a}

U{(®,2): d\z<d+c}. (17)

Then the change of the substrate concentrafienS(r, z, t) as well as the reaction

product concentratiol® = P(r, z,t) in the enzyme membrane can be expressed in
cylindrical coordinates as follows:

Z

05 _ 10 ( 0S 325 VxS (18)
o CSrar\Uar S92 Ky <+ S’

oP 19/ 9P 9%P VimaxS 0

= Dp=—|(r— N , : Qe,0<tr LT, (19
ot Pr8r<r8r> P812+KM+S (r2) € = (19)

The initial ¢ = 0) as well as boundary (& ¢ < T) conditions in cylindrical
coordinates can be formulated similarly to the ones defined in Descartes coordinates

S(r,z,00=0, (r,2) € Q\lc, (20)
S, z,0 =8y, (r,z2) €Tl¢, (21)
P(r,z,00 =0, (r,z) € Qc, (22)
os| S| _ap| _ap| _g 9
or|,_g Or|._, Or|._g Or|._,

P(r,0,1) =0, O0<r<a, (24)
E =0, (25)
9z z=0

S(r,z,1) = So, (26)
P(r,z,t) =0, (r,z)elc, 0<t <T. 27)

The base of the unit cell of the biosensor is a circle of radiuBecause of this the
densityi (r) of the biosensor current at timecan be calculated as follows:

) 1 21 agp
i(1) =I’leFDp—2/ / —

=neF Dp—
=Tne P /8210

whereg is the third cylindrical coordinate.

1 “9P
rdrdy = neFDp—ZZn/ —
ma o 02

rdr
z=0

z=0

(28)
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4. Digital smulation

Definite problems arise when solving analytically the nonlinear partial differential
equations with complex boundary conditions [13,17]. To obtain an approximate ana-
lytical solution, approximation and classification of each different condition are needed
[14,23]. On the other hand, digital simulation can be applied almost to any case. Conse-
guently, the problem was solved numerically.

The finite difference technique was applied for discretization of the mathematical
model [16]. We introduced an uniform discrete grid in all directiong:), z ands. An
explicit finite difference scheme has been built as a result of the difference approximation
of the model. Having a numerical solution of the problem, the density of the biosensor
current can be calculated easily.

The explicit scheme has usually a slower processing speed than the implicit one,
but is easier to program. The explicit finite difference-based simulator is satisfactory to
use because the processing speed of modern computers is high enough to ensure its use
is practical. The type of coordinate frame either Descartes or cylindrical is a parameter
of the computer program, developed for simulation of the biosensors operation.

The mathematical model as well as the numerical solution of the model was eval-
uated for different values of the maximal enzymatic ritgy, substrate concentration
So and the geometry of the membrane. The following values of the parameters were
constant in the numerical simulation of all the experiments:

Ds= Dp=23.0-10"°cn?/s, Km = 1.0-10"7 mol/cn?, ne=2. (29)

The maximal biosensor curreiytax (the biosensor response) as well as the time moment
of occurrence of the maximal current (response time) were assumed and analysed as
ones of the most important characteristics of biosensors.

In digital simulation, the biosensor response time was assumed as the time when
the absolute current slope value falls below a given small value normalised with the
current value. In other words, the time

1
Tr =l_m|>no{t. o e} (30)

needed to achieve a given dimensionless decayriatased.
Consequently, the maximal biosensor currgpk was assumed as the current at

the biosensor response tirfig. We employed = 10~°. However, the response tinfg
as an approximate steady-state time is very sensitive to the decay r&teTgr — oo,
whene — 0. Because of this we investigate the change of a half of steady-state time
[13]. The resultant relative output signal functiotiz) can be expressed as:

. iR —i(1) . . . .

() = — ir = i(Tr), imax = IRs (31)

R

wherei (¢) is the output current density at timas defined in (14) and (28 is assumed
as the steady-state curregt . Let us notice, that & i*(r) < latallr > 0,i*(0) = 1

3i (1)
at
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andi*(Tr) = 0. Let Tys be the time at which the reaction—diffusion process reaches
the medium, called half-time of steady-state or, particularly, half of the time moment of
occurrence of the maximal current, i.€.(Ty5) = 0.5.

5. Resultsand discussion

Using computer simulation we have investigated the dependence of the maximal
biosensor current as well as biosensor response time on the geometry of the membrane
surface roughness. The maximal biosensor curkggtwas assumed as steady-state
currenti,,, calculated at the respond@ time defined in (30)jmax = ico = ir. The
characteristica, » andc of the enzyme membrane domdiy, as well as2¢ (figure 2)
were expressed through the basic thicknés$ the enzyme layer

a=ad, b= Ba = apd, c=yd. (32)

The parametear expresses the relative width of the single unit (cell) of the biosen-
sor membranewx characterises also a frequency of the protuberances on the membrane
surface. The paramet@rstands for the relative width of the protuberances. The third
parametery stands for the relative height of the enzyme layer roughness. The case
wheny = 0 corresponds to the enzyme membrane having no protuberances on the
membrane surface, i.e., the membrane surface is assumed as absolutely flat. Varying
these threed, 8 andy) parameters, we model the enzyme layer roughness of the dif-
ferent relative width and height as well as frequency of recurrence of the protuberances.
To investigate the effect of the geometry of the membrane surface roughness we have
calculated the maximal biosensor response at the following valuesgoéndy:

a=12 4 (33)

g =0.250.5,0.75 (34)
1 2 Ne

=0, —,—,....,—, N¢=20. 35

S ONG 2N T 2N, e (35)

Figures 4—6 show results of calculations at given values of the charactetispicy

of the geometry of the membrane surface roughness, maximal enzymatic,ratef
107 mol/cnPs, substrate concentratidi of 2- 10-8 mol/cn? and membrane thickness
d of 0.01 cm.

Figure 4 presents the dependence of the maximal biosensor ciyggmn the
relative heighty of the enzyme layer protuberances, changing the celbsiatconstant
relative widthg of 0.5. One can see in figure 4, the maximal biosensor current decreases
with increase of relative height at all considered values of the cell size 1, 2 and 4.

This can be explained by the change of the volume of the protuberances. Keeping
and B constant, the volume of the biosensor protuberances increases with increase of
heighty. The decrease af,ax is especially notable at large valuesoaf On the other

hand, the decrease 6.y is more notable in cases, when calculations were carried out
in Descartes coordinates than in cylindrical ones.
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Figure 4. The maximal biosensor currépfax versus the relative height of the enzyme layer roughness

at different values of the roughness characterigtic = 1 (1,2), « = 2 (3,4), « = 4 (5, 6), calculated

in Descarteq1, 3,5) and cylindrical(2, 4, 6) coordinates a = 0.5, Vmax = 1077 moI/cm?s, So =
2108 mol/cnPs,d = 0.01 cm.
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Figure 5. The dependence of the maximal biosensor cuiggiton the relative heigh of the enzyme

layer roughness at different values of the characterfsti¢ = 0.5 (1, 2), 8 = 0.25(3,4), 8 = 0.75(5, 6),

calculated in Descarted, 3, 5) and cylindrical(2, 4, 6) coordinates att = 1, Vmax = 1077 moI/crr?s,
Sp = 2-10~8 mol/cnPs,d = 0.01 cm.

Letkp (kc) be the ratio of the volume of all the protuberances to the volume of the
entire enzyme domain when the roughness of the enzyme membrane are modelled by
Descartes (cylindrical) coordinates

bc afdyd By
ad +bc  add +afdyd 1+ By’
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Figure 6. Dependence of the half-tinfg 5 of the maximal biosensor current on the relative heijgtdf

the enzyme layer roughness at different values of the parameters= 1 (1,2,3), 0« =2 (4),a = 4 (5)

andg: B = 0.25(1), 8 = 05(2,4,5), B = 0.75 (3), calculated in Descartes coordinatesVatax =
10~/ mol/cnPs, Sg = 2 - 108 mol/cnPs,d = 0.01 cm.

mb’c (apd)®yd %
mwa?d + wb2c  (ad)?d + (aBd)2yd 1+ B2y’

Ratiokp as well askc can be called also as a relative volume of the protuberances
of the enzyme membrane.

The variation ofx, keepings andy constant, does not change the volume of the
membrane. Sinckyax varies witha (figure 4), the biosensor response depends also on
the shape of the protuberances not only on their volume.

Figure 5 shows the dependence of the maximal biosensor cuggrmn the rela-
tive heighty of the membrane protuberances, changing the relative ygiddh constant
cell size,x = 1. According to (36) and (37), the variation gfchanges the volume of
the membrane. One can see in figure 5, a greater relative Widfithe protuberances
corresponds to a greater value of the biosensor curggut However, some pairs of
curves are approximately the same. For example, the curve correspondging @5
and Descartes coordinates, is practically identical to an another curve which corresponds
to 8 = 0.75, calculated in cylindrical coordinates (figure 5). This can be explained by
approximate equality of the ratig, (0.5, y) andkc(0.75, y) atally > 0. Let us notice,
thatkc(B, y) = ko(B2, ). Sincekp(0.25, y) = kc(0.5, y) we can see also an another
pair of very similar curves in figure 5. Thus, two biosensors having the same thickness
d of the basic enzyme layer, the relative witlof the cell and the relative volume of the
protuberances give approximately the same biosensor response.

Figure 6 shows, that the half-tinig 5 of the maximal current increases signifi-
cantly with increase of each of three parameterg andy. For example, in a case
of Descartes coordinates when= 1, 8 = 0.5 andy = 0.5, Ty is about 1.5 times

kC(ﬂ’ V) =

(37)



R. Baronas et al. / Modelling of amperometric biosensors 237

greater than in the case of absolutely flat membrane surfaee0. Figure 6 plots the
half-time Ty 5 obtained from the model, formulated in Descartes coordinates only. In the
case of cylindrical coordinates, variation of half-tifig; is less notable. This can be ex-
plained by a relatively less volume of protuberanéesg, ) < kp(8, y) at0< 8 < 1,

y > 0.

The biosensor response considerably depends on the fact either enzyme kinetics or
the mass transport predominate in the biosensor response [2,3,15,24,25]. The biosensor
response is known to be under control of mass transport if the enzymatic reaction in the
enzyme membrane is faster than the transport process. The concentration of substrate
reaches zero inside the enzyme layer when the dimensionless diffusion medulus
Damkoehler number,

2 Vmaxd2

o =
DsKm

(38)
is much greater than unity.

The diffusion modulus essentially compares the rate of enzyme reablig Kv)
with the diffusion through the enzyme layei?( Ds). If o2 < 1, then enzyme kinetics
predominate in the biosensor response. The response is under diffusion control, when
the diffusion modulus is greater that unity> > 1, which is observed at high catalytic
activity and great membrane thickness or at low Michaelis consfay or diffusion
coefficient (Ds) values.

In the low substrate concentration caSg <« Kv, accepting one-dimensional-in-
space model, the stationary biosensor curigntan be calculated from the well-known
analytical solution given by Kulys [24]

1 1
loo = tan(;lol(t) = ”eFDSSOE<1 — COSI"(O’)>‘ (39)

In the case wher = 0 andSy; = 0.2Ky < Ky, We may compare the maximal
biosensorimax = 1.16 uAlcm? calculated numerically (figure 4) with the stationary
currenti,, = 1.15 uA/cm? calculated by (39). That values compares favourably as it
was expected.

Using formula (39) we can find the membrane thicknésst which the state—state
currenti,, gains the maximum at givety, Ds, So, Vimax, Km andSy < Ky . At first, we
calculate a derivative af,,(d) with the respect to the thicknesgs

Dino(d) — costf(o) + cosho) + o sinh(o)
= neFDsS . 40
ad Mers20 d? cost (o) (40)
Then we look foro at which that derivative gets zero:
— costt(o) + cosHo) + o sinh(o) = 0. (41)

Equation (41) has been solved numerically. A single soluticA omax ~ 1.5055
was obtained. Consequentially, gains the maximum at the membrane thicknéss,
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Figure 7. The dependence of the maximal biosensor cuiggiton the relative heigh of the enzyme
layer roughness at different values of the parameteasd: « = 1 (1-6),0 = 2 (7,8), « = 4 (9, 10
andg = 0.25(1,2), B = 0.5 (3,4,7-10, 8 = 0.75 (5, 6), calculated in Descarta®, 4, 6, 8, 10) and
cylindrical (1, 3, 5, 7, 9) coordinates aVmax = 10~ mol/cn®s, S = 2- 108 mol/cns, d = 0.001 cm.

where

1 DsKy
dmax =
Omax Vimax

Accepting (29), we find, thaina, ~ 0.00261 cM,imax ~ 2.56 pAlcm? at Vimayx =
10~" mol/cn?s. So, the decrease of the maximal curiggj with increase of the rough-
ness height (figure 4) can be explained by the membrane thicknes3 01 > dmay.

Since the biosensor response considerably depends on the diffusion modulus, we
repeat the calculations above with a membrane thickness considerably legkthan
i.e., at which the diffusion modulus is less tharr,x = 1.5055. Accepting (29) and
Vmax = 1077 mol/cn?s we model the enzyme membrane ten times thinner as before,
d = 0.001 cm, wherr = 0.577 < omax. Consequentially, the diffusion modulug
equals to 0.33 af = 0.001, whilec? = 33.3 atd = 0.01 cm. Thus the biosensor
response is under diffusion control in the case/of 0.01, while the enzyme kinetics
predominate in the case @f= 0.001 cm.

Results of calculations in the casedt 0.001 cm are depicted in figure 7. One
can see in figure 7, the maximal biosensor curiggtincreases even up to about 17%,
while in the case offi = 0.01 cmimax decreases up to about 15% (figures 4, 5). When
d = 0.001 cm, the maximal curreiay increases with increase of each of three parame-
tersa, B andy. Figure 7 shows, that two biosensors, satisfyipgr kc, generates ap-
proximately the same response as it was noticed in the previous case/\wh8rdl cm
(figure 5).
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One can see (figure 7) the maximal bioseriggy, calculated numerically at = 0,
equals to about.26 uAlcm?. The stationary current,,, calculated from (39), equals
to about 169 uA/cm?. That values differs by about 15%, while the corresponding dif-
ference in the case of thicker enzyme membrahe; 0.01, was only about 1%. The
formula (39) is applicable in the case of low substrate concentraiprg Ky. Our
calculations were carried out 4 = 0.2Ky. So, in the case when the reaction rate
controls the biosensor responsé, < 1, the conditionSy <« Ky should be especially
strictly taken into consideration to calculate the accurate value of the stationary current
by (39).

The maximal biosensor current is sensitive to changes of the maximal enzymatic
rate Vimax and substrate concentratid [2,3,14,15,25]. Changing values of these two
parameters, the maximal current varies even in orders of magnitude. Because of this,
we investigate the influence of the geometry of the roughness of the membrane surface
on the biosensor response at different value¥pf and Sp. Due to the sensitivity of
the biosensor response to change¥gf and Sy, we normalise the maximal biosensor
current to evaluate the effect of the geometry of the membrane surface roughness on the
biosensor response. Ligt.(y) be the maximal current of a biosensor, having the rela-
tive heighty of the enzyme layer roughness. Thiug«(0) corresponds to the maximal
current of a biosensor, having no roughness on the membrane surface. We express the
normalised maximal biosensor curréft,ax as the maximal current of the biosensor,
having membrane surface roughness, divided by the maximal current of the correspond-
ing biosensor, having no membrane surface roughness,

imax(¥)
imax(0) .

AssumingTys(y) as the half-time of the maximal biosensor response at given
we introduce normalised half-tinig o5 as follows:

iNmax(V) = (43)

(44)

Results of calculations at two values W, 10~7, 10~ mol/cn?s as well as two
values 0fSy: 2.0-1078,2.0- 10°° mol/cn?s are depicted in figures 8, 8 & 0.01 cm)
and figure 104 = 0.001 cm). One can see in these figures, the tenfold reduciigf
influence a significant change of maximal currggng as well as half-timdy 5, while the
tenfold reducing ofSy has no practical influence apax as well asiys. This is noticed
in both cases of the membrane thickngs9.01 and 0.001 cm.

In the case of the low enzymatic rafé,,, = 10-8 mol/cm?s, and thick enzyme
membraned = 0.01 cm, a slight non-monotony of the maximal biosensor current can be
noticed (figure 8). In this case the diffusion modultfsequals to about 3.33; ~ 1.84.
That value ofo is rather near tomay, defined in (42). Let us remind, that in the case of
1-D enzyme membrane the stationary curiignts a monotonous increasing function of
the thickness at < omay While i, monotonous decreasescatc omay.
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Figure 8. The normalised maximal biosensor curigftax versus roughness characteristi@at different
the maximal enzymatic ratéénax. Vmax = 10~ (1-4), Vmax = 108 (5, 6) mol/cnPs, substrate concen-
tration Sp: Sp = 2- 1078 (1, 2,5,6), Sp = 2- 102 (3, 4) mol/cnPs, calculated in Descartég, 4, 6) and
cylindrical (1, 3, 5) coordinates at = 1, 8 = 0.5,d = 0.01 cm.
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Figure 9. The normalised half-tin¥ o 5 of the maximal biosensor response versus the roughness charac-
teristicy. Notation and all parameters are the same as in figure 8.

6.

Conclusions

The two-dimensional-in-space mathematical model (4)—(13) of amperometric
biosensor operation can be successfully used to investigate the kinetic peculiarities of
membrane-based biosensors, having rough surface of the enzyme layer, when the rough-
ness is modelled by identical longitudinal slabs, distributed uniformly (figure 1). Corre-
spondingly, the model (18)—(27) can be used in the case when the roughness is modelled
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Figure 10. The normalised maximal biosensor curigpiax versus characteristie of the enzyme layer at
the membrane thicknegs= 0.001 cm. Other parameters and notation are the same as in figure 8.

by identical cylinders, arranged in a rigid hexagonal array (figure 2).

The maximal biosensor currefifax decreases with increase of the relative hejght
of the protuberances (figures 4, 5 and 8) when the biosensor response is under diffusion
control andipmay increases with increase of (figures 7, 10) when the enzyme kinetics
predominate in the biosensor response. The half-figgeof the maximal current always
increases with increase pf(figures 6, 9). The influence of the surface roughness on the
biosensor response is more significant at a thinner membrane than at a thicker one.

Two biosensors, having the same basic thickrkesthe basic enzyme layer, the
relative widtha of the cell and the same ratio of the volume of the protuberances to the
volume of the entire enzyme membrane, give approximately the same biosensor response
(figures 5, 8, 9).

The influence of the roughness of the membrane surface on the biosensor response
is more significant at the higher maximal enzymatic rate than at lower one. The ten-
fold change of substrate concentration practically does not effects the influence of the
roughness of the membrane surface on the biosensor response (figures 8, 10).
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